
DeathTalk

A Presentation of Concurrent Normal Computational Logic

The Author is You

http://deathtalk.centerclause.com
Normality is truth. Every use is free.

March, 2018

http://deathtalk.centerclause.com

CONTENTS 1

Contents

1 Abstract 2

2 Introduction 2

3 Conclusion 4

4 Download 4

5 Concepts 5

6 Dictionary of Machine Words 9

7 The Obligatory Greeting 10

8 Virtual Nodes 10

9 Execution with Stretch and Work 11

10 Standard Types 12

11 Normal Runtime Data with Contracts 12

12 Words 15

13 Concurrent Binary Operations 17

14 Arrays 19

15 Articles 21

16 Impressions 21

17 Conditional Execution 23

18 Temporary Recurring Nodes 24
18.1 Loops . 24

19 Types 26

20 Spatially Recurring Nodes 26
20.1 Outsources . 27
20.2 Routines . 28
20.3 Bound Outsources . 31
20.4 Continuity . 33

20.4.1 Source Continuity . 34
20.4.2 Contract Continuity . 35

20.5 Operators . 35

1 ABSTRACT 2

21 Rhythm 37
21.1 Entities of the Obligatory Greeting . 37

22 Internal Iterator with Rhythm 39

1 Abstract

DeathTalk is a presentation of massively concurrent normal computational logic. And as such
a presentation of the fundamental technologies that a computational machine depends on.
DeathTalk is what Assembler could have been. Technologies that a computational machine
does not depend on are only implemented as far as necessary for this presentation.

2 Introduction

DeathTalk is available at http://deathtalk.centerclause.com.

DeathTalk reads an instruction graph from an XML file without read-ahead and without
priorities and executes this graph with a traversal precisely in the order given by the docu-
ment. This traversal or execution may be divided into concurrent executions at any divisible
instruction of which there are many. Massive concurrency is the nature of any such graph
itself and not a feature of any programming language such as with threads.

The instruction graph is normal which means that there are no further abstractions and
concurrency is as broad as possible. The instruction graph may be structured into subgraphs
that are named Outsources here. Such an Outsource is called by Routines and Operators
with Jumps. A graph without Jumps is a tree graph. A graph with Jumps is not a tree
graph. Transformations are homeomorphic and therefore a Routine call does not pass data.
The order of instructions in execution is not changed by a transformation.

Outsources are implemented mathematically which means that they have no state in terms of
scope of their own and thus memory is untouched by execution. Routines call explicitly before
inferior execution and operators call implicitly after inferior execution. All deformations of
the instruction graph are continuous. Therefore routines are implemented bidirectionally
which means that the called Outsource may call back the calling Outsource itself many
times before the called Outsource finally returns.

The instruction graph can be extended from further XML files at runtime.

Runtime or temporary data is organized with a stand-alone stacked hierarchy of scopes. Such
a scope is called Contract here. Stand-alone means independency. Independency means
that runtime data and business data do not interfere and business logic is not scattered with
artificial scopes. There is no scope paradigm. A Contract is initiated programmatically
like a routine is called. Thus both calling and called routine share a Contract with access
privileged by the calling routine.

http://deathtalk.centerclause.com

2 INTRODUCTION 3

Concurrency is applicable to the smallest of expressions. Addition is an example for a divisible
instruction. It is already concurrent and does not use memory. It takes two independent
operands that can be obtained in any way from inferior execution and gives a result that is
independent to superior instructions. A graph of such instructions is massively concurrent.
There is no interference on this lower level with business logic.

A concurrent instruction works without programmatic control and always waits by default.
If the result is determined by some parameters already then a concurrent instruction may not
wait for the remaining data which is a rational race. An example for that is a logical OR.

Some of these technologies are not supported by modern compilers such as contracts and
bidirectional routines, though, they can be implemented with modern assemblers.

Some other technologies are not supported by modern computers themselves such as concur-
rent instructions. Massive concurrency is not feasible with modern computers since data is
stored with synchronized particles and not available everywhere like radio waves. A machine
like that itself is feasible since the brain is massively concurrent.

The presented technologies are missing in modern computing. Although the success of object-
oriented programming languages and anonymous functions expresses such a need. A class is
similar to contracted scopes. Getters and Setters do not require a scope. Anonymous functions
asking for bidirectionallity.

Massive concurrency is simply not practical on a modern computer. Threads are too heavy
for such an implementation due to implicit scopes and designated memory.

DeathTalk does not respect the limitations of modern compilers and computers. DeathTalk
is a presentation of concurrent normal computation logic. DeathTalk is implemented to the
point to make that point only and not further.

3 CONCLUSION 4

3 Conclusion

The conclusion can only be that once a language is implemented that supports the presented
technologies then all other software is dead. Implementations of business logic will have to be
rewritten since bidirectional routines that are normal are not supported by common languages
and wide-spread instructions that break a single execution do not determine the state of a
concurrent execution.

Technologies essential to massive concurrency such as concurrent arrays or streaming loops
are simply not applicable with modern architectures. Furthermore the synchronization of
execution and scopes scatters business logic in modern computing. Threads run away and
require additional instructions for control.

Eventually concurrency is to be enabled with modern computing and to be disabled with a
normal computational logic like DeathTalk.

DeathTalk is normal. Available software and hardware is abnormal.

4 Download

DeathTalk is available at http://deathtalk.centerclause.com as a NetBeans 8.2 Java 8 Project.
The NetBeans Project Folder contains two additional folders. Folder resource contains exam-
ples. Folder debug is for stuff generated during execution.

DeathTalk is consider as truth and thus every use is free. The author has no interest in
implementing DeathTalk any further without a truly massively concurrent architecture to
test against. A machine that handles memory with waves and not with particles.

The main executable is class
com.centerclause.deathtalk.Realm.

Html documentation of the Dictionary is generated into folder resource by class
com.centerclause.deathtalk.documentation.Documentation.

http://deathtalk.centerclause.com
http://www.netbeans.org

5 CONCEPTS 5

5 Concepts

There is no simple description of DeathTalk. DeathTalk is made of a number of small classes
that work together like a machine. The central method to this machine is run of class
com.centerclause.deathtalk.machine.process.Work.

Most concepts cannot be described independently. Therefore a brief description of each
concept is given here. And detailed descriptions follow later.

Algorithm An executable graph of instructions is called Algorithm.

Word, Part, Dictionary A unique piece of computational logic is called Word. Many
words are atomic such as value:int or value:add and some words are micro-expressions such
as value:increment. A Word is abstract logic. A set of Words is called Part. A set of
Parts is called Dictionary. A source code is read from a stream and build from looking into
a Dictionary.

Instruction An Instruction specifies a Word with additional information from the source
code. An Instruction is told the direction of execution and executes a Word accordingly.

Cycle A Cycle connects instructions as a graph. Direct inferior Cycles are visited in
order of ascending indices. A direct inferior Cycle is commonly called a child and the direct
superior Cycle is commonly called the parent.

Execution An instruction graph is executed with a traversal. A node may be executed
more than once due to loops, routines or vector execution. Such an instruction graph is
executed with an accordingly deformed traversal.

Direction An execution starts at the top of the instruction graph and moves Down. The
direction is changed at a leaf node and the execution moves Up. The direction from one child
cycle to the next child cycle is called Right. A loop may require a Full Left from the last
child cycle to the first child cycle.

Parameter, Perimeter, Diameter An instruction is executed at different stages of a
deformed traversal. Therefore data is classified as Diameter if generated by inferior Nodes.
Data is classified as Perimeter if generated by the same Node from for example XML
attributes or Text Nodes. And data is called Parameter if generated by superior Nodes on
the way down the instruction graph.

5 CONCEPTS 6

Command A Command takes values and gives no result.

Control A Control is a built-in combination of Commands and gives no result such as
exe:ifThenElse or exe:whileDo.

Operation An Operation takes values and gives a value. Values are exchanged with
runtime stacks and thus Operations may technically give many results. However, no such
standard operation is implemented. Multiple results may occur with routines and operators,
though.

Value Values are exchanged with runtime stacks and do not require a binding. Thus
Values behave like anonymous variables. L- and R-values do not occur since stacks work at
runtime.

Assignment An assignment changes the value of a variable.

Bind A bind associates a unique name with a value in a scope.

Reference DeathTalk is implemented in Java and maps References accordingly.

Expression An Expression combines values to other values.

Impression An Impression evolves a single operand or Value of an Expression like a
path.

Goods All Values on all data stacks at some point of an execution are called Goods and
demonstrate that more than one stream of data may be implemented. Two streams are
implemented Register and Hold.

Infinite Values, Hold A Bit is actually Infinity. Logical operators such as And and Or are
infinite arithmetic. InfiniteValues are kept on a separate data stack called Hold in order
to demonstrate that more than one stream of data may be implemented and since all finite
values are actually combinations of infinite values.

Finite Values, Register Numeral and literal values are finite and kept on a stack called
Register.

5 CONCEPTS 7

State A State is the position on the instruction graph and stores references to the current,
last and next Cycle such that the direction of execution is determined.

Work Work is a serial string over Cycles. Execution is divided into Work.

Progeny, Sibling Execution is divisible at many instruction nodes since direct inferior
nodes are independent. Such a set of direct inferior nodes is called Progeny. A single
such direct inferior instruction is called Sibling. Only static Progeny-s are implemented.
Dynamic Progeny-s such as streams of Siblings are not implemented.

Rational Race The result of a divisible Operation may already be determined by a single
Sibling such as with a logical And. This determines a rational race and the node may or
may not wait for all Siblings for further execution.

Outsource An Outsource is the definition of otherwise recurring instructions with a sub-
graph and thus defines a routine or an operator.

Stretch A Stretch is the set of instructions between two Jump nodes that divide an in-
struction graph into Outsources and Insources. A Stretch is executed forth and later
back. A Stretch is executed at many different times. The division of execution into Work is
synchronized with the division of source into Stretches.

Array Arrays are implemented without type for simplicity of the presentation. Higher
dimensions are nested since such arrays are traversable and as such massively concurrent.

Scope A Scope is a map of uniquely named values.

Article An Article is an absolute Scope that may be stored permanently. IO is not
implemented.

Contract A Contract is a relative Scope for temporary or runtime data. Contracts are
initiated programmatically only.

Type A type defines the nature of a Value. Some standard types and operators are im-
plemented. Complex types may be defined and associated with according Routines and
Operators in a hierarchy similar to packages in Java. Type safety is weak for simplicity of
the presentation.

5 CONCEPTS 8

Routine A Routine is the execution of an Outsource before the execution of inferior
nodes and may be called back bidirectionally from the Outsource many times. Data is
generated during this communication.

Insource An Insource is a direct inferior node of a Routine.

Callback A Callback returns back and forth from an Outsource to an Insource of the
calling Routine.

Binary Operation A System of Binary Operations is implemented for book-keeping of the
many combinations of operations on standard and complex types. Many binary operations
are not yet implemented since it is not required for this presentation. All implemented Binary
Operations of Standard and Custom Types are executed within

com.centerclause.deathtalk.value.Calculation .

Operator An Operator is the execution of an Outsource after the execution of inferior
nodes and thus is unidirectionally. Data is passed at once altogether.

Process A Process initiates the execution of an instruction graph.

Extension A special command exe:extend may be executed in order to read more instruc-
tions from a stream and extend the instruction graph accordingly.

Realm A Realm holds data shared by many Processes which is not tested.

Jack A Jack is a FiniteValue that wraps a FiniteValue in order to change the behavior
for example from a variable to a constant value.

Sanctuary Rational races may produce run-away threads that may or may not be allowed
to finish and are moved to a Sanctuary once the Process itself is actually finished.

Rhythm Rhythm is the definition of a continuous alternation of operands and operation.
Rhythm gives grammar that allows for validation of the source code and generation of a
language called Epilog which increases readability. Rhythm also has the effect of shallow
data stacks since operands are kept closely to operations.

Arity Arity is the number of values required and defined with laws of Rhythm.

6 DICTIONARY OF MACHINE WORDS 9

Epilog With applied Rhythm DeathTalk XML or Dtx translates immediately into a higher
programming language. This language is called Epilog since that is about it. Epilog is not
defined in every detail. Epilog is not tested. There is no parser and no compiler. Epilog
code is simply produced along the way.

Comment A comment is either an XML comment or an annotation on the next instruction.

Breakpoint A Breakpoint is an annotation at which execution stops if the JVM is run in
Debug Mode. Execution continues if an according thread is interrupted.

6 Dictionary of Machine Words

A DeathTalk source code is written in XML since their are plenty of XML tools and an XML
document is itself a graph. Therefore XML rules apply. XML items are read from a stream
without read-ahead and compared against the MachineDictionary, see table 1.

Validation takes place with a builtin Rhythm and can be switched off with exe:rhythm=“false”
on exe:deathTalk itself or any other node for all inferior nodes unless switched on again. A
Schema is not provided since DeathTalk is not at a productive stage. A Schema could be
generated from Rhythm.

Table 1: All Parts of the Machine Dictionary
default prefix namespace

exe dict://deathtalk/execution
value dict://deathtalk/value
cmd dict://deathtalk/command

contract dict://deathtalk/contract
art dict://deathtalk/article

journal dict://deathtalk/journal
rhythm dict://deathtalk/rhythm

jack dict://deathtalk/rhythm
debug dict://deathtalk/debug

system dict://deathtalk/system
massive dict://deathtalk/massive

a resource://deathtalk/annotation

7 THE OBLIGATORY GREETING 10

7 The Obligatory Greeting

DeathTalk is normal. Available software and hardware is not normal. Therefore the obligatory
greeting is not given. Instead DeathTalk can only say Good Bye for a first example, see Listing
1 and figure 1 for the according graph.

Figure 1: A simple talk

deathTalk

println

string

Listing 1: A simple talk

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk

3 xmlns:exe="dict: // deathtalk/execution"

4 xmlns:value="dict: // deathtalk/value"

5 xmlns:cmd="dict: // deathtalk/command">

6 <cmd:println >

7 <value:string >Good Bye World!</value:string >

8 </cmd:println >

9 </exe:deathTalk >

8 Virtual Nodes

A virtual node of the instruction graph or algorithm of DeathTalk comprises of a Cycle, an
Instruction and a Word, see Figure 2. Node always means Virtual Node.

A streamed XML source code is read with DtxReader within Realm. There is no read-
ahead. If a read Word is a FactoryWord which is derived from MachineWord which is
derived from Word then an associated Instruction is built by that Word. An Instruction
stores Perimeters read from source code. An Instruction builds an associated Cycle that
is attached to the direct superior node in order of the source code.

A Cycle stores its relations to direct superior and inferior Cycles of the graph. These
relations are commonly called parent and children. An Instruction specifies a Word with
Perimeters read from source code. A Word stands for a specific unique piece of logic.

An algorithm is executed with DeathTalk within Realm. A Cycle has a specific location
in the algorithm from where it calls its associated Instruction. An Instructions calls its

9 EXECUTION WITH STRETCH AND WORK 11

associated Word at specific events such as a Shift down or up the graph during execution.
Word, Instruction and Cycle have no runtime state.

A derivate of a Cycle determines the behavior of the algorithm.

Figure 2: A Virtual Node of DeathTalk

Word
MachineWord
FactoryWord

Instruction

Cycle

builds

builds

directed
calls

any calls

9 Execution with Stretch and Work

Execution is divided into Works. Work literally means physical work since a node acts like
a force and a traversing shift acts like a displacement.

Execution is started by calling the method run of DeathTalk which then initiates a Process
that starts an initial Stretch that starts an initial Work.

A Stretch is the range of instruction nodes between and including two Jump nodes. Stretches
are divisions of an instruction graph in space or according to source code at Routines and
Operators. Works divide an according deformed traversal or execution temporarily or at
runtime. Stretches are synchronized with Work in order to determine the direct superior
Routine node of an Insource at runtime as discussed in Section 20. A new Stretch always
begins with a new Work. A Stretch may be executed at many different times first forth
and later back.

A displacement at execution from one virtual node to another directly related node is called
Shift. A displacement at execution from one virtual node to another not directly related
node is called Jump.

The core method of DeathTalk is the method run of Work. This method requires a State
that tells an exact position on the instruction graph. State stores where execution is coming
from and where it is which makes an edge with a determined direction. Work asks a Cycle
for the next Cycle and State performs that shift.

Works method run returns on either of three conditions. Firstly, if a given end State is met
in which case Work is actually finished. Secondly, if the current Cycle is a ProgenyCycle

10 STANDARD TYPES 12

in which case inferior Works are initiated according to the definition of that ProgenyCycle.
The same Work is picked up once all inferior Works have finished. Thirdly, Work returns
if its execution is overruled by either a finished rational race or an exception.

10 Standard Types

DeathTalk supports value:int, value:real and value:string only. Real is mapped to Javas float.
DeathTalk is a presentation of a normal computational logic that is massively concurrent.
More types are not required since a machine that supports massive concurrency is not available
and thus according types unknown.

Int and Real are parsed with Javas Integer and Float parser. According notations apply.
See Listing 2 as example.

Listing 2: The Standard Types of DeathTalk

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk

3 xmlns:exe="dict: // deathtalk/execution"

4 xmlns:value="dict: // deathtalk/value"

5 xmlns:cmd="dict: // deathtalk/command">

6 <cmd:println >

7 <value:int >1</value:int >

8 </cmd:println >

9 <cmd:println >

10 <value:real >1.1</value:real >

11 </cmd:println >

12 <cmd:println >

13 <value:string >string </value:string >

14 </cmd:println >

15 </exe:deathTalk >

11 Normal Runtime Data with Contracts

The implementation of runtime data management is normal since their is no paradigm on
the creation of scopes. A Scope is a container that maps one value to a name that is
unique within that container. There is no interference with the execution itself at any point.
Therefore business data and runtime data are strictly separable.

Runtime data is temporary and therefore has no location in storage. Runtime data is managed
with a stacked hierarchy of scopes in memory. A Scope of such a hierarchy is called Contract.

All Work runs within a Contract. The initial Work runs within the initial Contract. A

11 NORMAL RUNTIME DATA WITH CONTRACTS 13

further Contract is initiated independently only and attached to the Contract in which it
is created. This further Contract is then set as top Contract of the Work in which it is
created. A Contract is initiated on Shifts down the instruction graph and deleted on Shifts
up the instruction graph by the same virtual node. The direct superior Contract is then
made the top Contract again for the same Work.

Contracts are not created implicitly through routine calls or other. Therefore successive
Routines run within the same Contract and may exchange data by this way. Access to a
Contract may be restricted on initiation. Access to the initial Contract is defined with the
attribute contract :initial on exe:deathTalk. Access to inferior Contracts is defined with the
attribute contract :access on the contract :further node that initiates a Contract. Options
are private, protected or public according to table 2.

A reference of a Value is mapped in the top Contract with contract :bind which takes both
a string as key and any value from top of Register. A bind to superior Contracts is
not implemented. A bind is not type specific. The Value is left on Register for further
computations from which it can be removed by cmd :expression.

A reference to a Value of a Contract that is put on Register is made with a contract :referInt,
contract :referReal, contract :referString or a contract :referArticle. These nodes are typed in
order to introduce at least some type safety which is otherwise missing for simplicity of the
presentation. A reference to a Value of a superior Contract requires the attribute con-
tract :super=“N ” where N is the number of superior levels. The string parent refers to the
first superior level. An exception is thrown if access is denied. Nodes for exception handling
are not implemented for simplicity of the presentation.

Table 2: Access to Contracts
contract :access=“public” Data is accessible from all inferior Contracts.

contract :access=“private” Data is not accessible from inferior Contracts directly. Data
is accessible to outsources through bidirectional callbacks.
Data is passed per definition to operators.

contract :access=“protected” Data is accessible only from direct inferior Contracts.

contract :access=“N ” Data is accessible only from inferior Contracts of the next
N levels. This is provided only since the implementation
works in this way anyway.

11 NORMAL RUNTIME DATA WITH CONTRACTS 14

Listing 3: A simple example of Contract

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk name="Example of further of contract."

3 xmlns:exe="dict:// deathtalk/execution"

4 xmlns:value="dict: // deathtalk/value"

5 xmlns:cmd="dict:// deathtalk/command"

6 xmlns:contract="dict:// deathtalk/contract">

7 <contract:further access="protected">

8 <!-- delete reference that is left by bind on up -->

9 <cmd:expression >

10 <contract:bind >

11 <value:string >name</value:string >

12 <value:string >success </value:string >

13 </contract:bind >

14 </cmd:expression >

15 <cmd:println >

16 <!-- access same contract -->

17 <contract:referString >

18 <value:string >name</value:string >

19 </contract:referString >

20 </cmd:println >

21 <contract:further >

22 <cmd:println >

23 <!-- access protected superior contract -->

24 <contract:referString contract:super="parent">

25 <value:string >name</value:string >

26 </contract:referString >

27 </cmd:println >

28 </contract:further >

29 </contract:further >

30 </exe:deathTalk >

12 WORDS 15

12 Words

Each Word is either a Command or an Operation. A Control such as exe:ifThenElse
is a builtin combination of Commands. A Command may take operands and does not
give operands. An Operation may take operands and gives operands which is a significant
difference.

Each Work keeps its runtime data on stacks managed with Goods. The number and nature
of data stacks of a productive design of a computational logic depends on conditions that are
not known here. The number of stacks implemented is chosen to be greater than one in order
to avoid oversimplifications such as a definition of Success or Failure. A stack called Hold
keeps InfiniteValues and a stack called Register keeps FiniteValues.

A Bit is an InfiniteValue. All standard types could technically be made from bits in software.
An InfiniteValue is also the result of a comparison or a logical operation which are exe:and
and exe:or and exe:not. The arithmetic of these operations is that of infinity.

An operand is either a Diameter or a Perimeter or a Parameter. A Diameter is expected
once all inferior nodes have been visited. A Perimeter is given statically on the same node
by either an XML attribute or an XML text node. A Parameter is expected immediately
and thus produced by a superior instruction node.

An Operation that combines Diameters exclusively is an Expression such as addition,
multiplication, concatenation and the like. An Operation that combines Diameters, Pe-
rimeters and Parameters is called Impression which includes scope and array access and
is defined in Section 15. Specialized variants are documented accordingly.

An Impression makes a path and typically changes one operand of an Expression succes-
sively. Impressions are not as easy to read in XML as Expressions since operands appear
outside of an instruction node. Readability is improved with syntactic sugar nodes defined
with Rhythm in Section 21.

All increments are pre-increments. A post-increment is not supported since its execution is
out of order.

A Command does not put new operands on stacks per definition. An Expression or a
chain of Expressions leaves data on stack. cmd :expression is a Command that removes
one operand from Register to close an expression.

See Listing 4 for examples including a multiplication of execution with exe:times.

12 WORDS 16

Listing 4: Simple Commands and Expressions

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk

3 xmlns:exe="dict: // deathtalk/execution"

4 xmlns:value="dict: // deathtalk/value"

5 xmlns:cmd="dict: // deathtalk/command"

6 xmlns:rhythm="dict:// deathtalk/rhythm">

7 <!-- a command gives nothing -->

8 <cmd:println >

9 <!-- an expression produces an operand -->

10 <!-- a binary expression -->

11 <value:add >

12 <!-- two int diameters for value:add -->

13 <!-- a text node is a perimeter -->

14 <value:int >1</value:int >

15 <value:int >2</value:int >

16 </value:add >

17 </cmd:println >

18 <cmd:println >

19 <!-- unary expression -->

20 <value:increment >

21 <!-- one diameter for value:increment -->

22 <value:int >1</value:int >

23 </value:increment >

24 </cmd:println >

25 <!-- remove a left over operand from stack -->

26 <cmd:expression >

27 <value:int >1</value:int >

28 </cmd:expression >

29 <!-- syntactic sugar helps with readability -->

30 <rhythm:for >

31 <!-- parameter to exe:times -->

32 <value:int >3</value:int >

33 <!-- a control is a command -->

34 <exe:times exe:name="demo">

35 <cmd:println >

36 <!-- an attribute is a perimeter -->

37 <exe:number exe:name="demo"/>

38 </cmd:println >

39 </exe:times >

40 </rhythm:for >

41 </exe:deathTalk >

13 CONCURRENT BINARY OPERATIONS 17

13 Concurrent Binary Operations

A truly binary operator is defined as a mathematical function and thus takes independent
operands here called Diameters since these operands are supposedly produced by inferior
nodes. A binary operator is truly binary if the result is not assigned to one diameter.

Independency means that operands may be produced concurrently which also means that
operands are then produced out of order. Every binary operation is divisible into two Works
which in succession gives automatic massive concurrency at machine level. Such machine
instructions are not available as of today since technology for memory is still very limited.
Data is distributed with particles and not with waves.

A generic divisible node exe:divide is implemented in DeathTalk that runs each direct inferior
node in a separate Work anyway. A further concurrent implementation of binary operations
in software is therefore straightforward. Operands are spilled in order of nodes automatically
onto the stack of the Work of the Operation. A few of these operators are available with
Part massive of the MachineDictionary. A default application of concurrent binary op-
erations is not practical since threads are too heavy and other concurrent software technology
is not available. See Listing 5 for an example.

Logical binary operators such as And and Or are incompletely determined and all other
operators are completely determined. The operator And is already determined if one operand
equals False. The operator Or is already determined if one operand equals True. In concurrent
form these operations may therefore return before all inferior nodes have returned which makes
a rational race. The handling of operands that are left behind depends on the application
and further discussion is not necessary here.

Programmatic threading at business level is not required with concurrency available at ma-
chine level which should load balanced well automatically if necessary at all since it is as
fine grained as possible and therefore normal. Business logic is then free of extra logic for
threading.

The brain is massively concurrent and therefore massively concurrent technology will be
available one day.

Massive concurrency is the nature of a normal instruction tree. Massive concurrency is
intrinsic and therefore automatic. Instructions for quitting are abnormal. break, continue
and return only determine the state of a single execution. The state of concurrent execution
is not determined with break, continue and return. Software will have to be implemented
without quitting instructions. All nodes have to finish normally. This is always possible. And
stating a return value only improves readability. Software design patterns will have to change
with future higher programming languages.

An instruction that disables further concurrent execution of inferior nodes is implemented with
exe:serial. This would not prevent execution of other Work in case of a quitting instruction.
It only changes the behavior of execution of inferior Works from concurrent to serial.

13 CONCURRENT BINARY OPERATIONS 18

Listing 5: Divisible Operations

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk

3 xmlns:exe="dict: // deathtalk/execution"

4 xmlns:value="dict: // deathtalk/value"

5 xmlns:cmd="dict: // deathtalk/command"

6 xmlns:massive="dict:// deathtalk/massive">

7 <cmd:println >

8 <!-- serial add -->

9 <value:add >

10 <value:int >0</value:int >

11 <value:int >1</value:int >

12 </value:add >

13 </cmd:println >

14 <!-- run inferiors separately -->

15 <exe:divide >

16 <cmd:println >

17 <value:string >probably </value:string >

18 </cmd:println >

19 <cmd:println >

20 <value:string >too slow</value:string >

21 </cmd:println >

22 <cmd:println >

23 <value:string >to tell</value:string >

24 </cmd:println >

25 </exe:divide >

26 <cmd:println >

27 <!-- concurrently add execution numbers -->

28 <massive:add exe:name="operand">

29 <exe:number exe:name="operand"/>

30 <exe:number exe:name="operand"/>

31 </massive:add >

32 </cmd:println >

33 </exe:deathTalk >

14 ARRAYS 19

14 Arrays

Arrays are not typed for simplicity of the presentation of a normal computational logic.
Arrays are nested since this results a tree graph. A nested Array can be executed or
traversed like any other tree graph. If all elements are independent then the Array can be
operated with massive concurrency which is not supported with current hardware and not
practical with current multitasking software.

The same exemplary nested Array is defined by all three notations, firstly, the following line
of Epilog, secondly, the below tree graph and thirdly, Listing 6 of DeathTalk.

define[3,define["a","b"],(declare[3] = "copy"),-2]

[]

3 []

a b

[]

copy copy copy

-2

In DeathTalk a nested array is defined by an initializer list or element by element with
value:arrayDefinition.

A nested Array of any dimensions is declared with value:arrayDeclaration. Elements are
initialized with a NullFiniteValue. The extension of an Array with another dimension is
implemented with a combination in ArrayDeclarationFiniteValue. Each leaf element is
assigned a new ArrayFiniteValue of the specified value:dimension. Further details such as
the presence of Values that are not null are not implemented.

All leaf elements of a nested Array are set each with a copy of a given Value by value:arrayDesign
through a traversal. This binds a new Value to each leaf element. An assignment is not avail-
able through traversal since Arrays are implemented without type for simplicity.

This traversal is named ArrayZip and is also applied to print all elements.

More details are discussed in Section 15 and shown in Listing 7.

14 ARRAYS 20

Listing 6: Arrays

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:cmd="dict:// deathtalk/command">

5 <cmd:println >

6 <value:arrayDefinition >

7 <value:arrayElement >

8 <value:int >3</value:int > <!-- 1st element is int -->

9 </value:arrayElement >

10 <!-- second element makes a nested array -->

11 <value:arrayElement >

12 <value:arrayDefinition >

13 <value:arrayElement >

14 <value:string >a</value:string > <!-- 1st of nest -->

15 </value:arrayElement >

16 <value:arrayElement >

17 <value:string >b</value:string > <!-- 2nd of nest -->

18 </value:arrayElement >

19 </value:arrayDefinition >

20 </value:arrayElement >

21 <!-- third element makes a nested array -->

22 <value:arrayElement >

23 <!-- combine array and value -->

24 <value:arrayDesign >

25 <value:arrayDeclaration >

26 <value:dimension >

27 <value:int >3</value:int >

28 </value:dimension >

29 </value:arrayDeclaration >

30 <!-- set a copy to all elements -->

31 <value:string >copy</value:string >

32 </value:arrayDesign >

33 </value:arrayElement >

34 <value:arrayElement >

35 <value:int >-2</value:int > <!-- 4th element is int -->

36 </value:arrayElement >

37 </value:arrayDefinition >

38 </cmd:println >

39 </exe:deathTalk >

15 ARTICLES 21

15 Articles

DeathTalk supports objects with Article which is a Scope which is a map. Article is an
absolute Scope and therefore suitable for business data and for IO which is not implemented.

Part article provides basic in-scope commands and operations. Part value provides basic out-
scope commands and operations for binding and referring values of Article. A complete set
of commands is not implemented for simplicity of the presentation of a normal computational
logic.

An Article can be made an instance of a Type as discussed in Section 20.5 and thereby asso-
ciated with Routines and Operators. Bidirectional Routines can be used as constructors
and so on. Therefore Article is a type that is defined weakly at runtime through bidirectional
Routines and unidirectional Operations.

Type safety, classes and inheritance or object orientated programming is a matter of a higher
programming language and is not defined here.

The following three lines of Epilog are generated with Listing 7 and print def. The at
sign symbolizes Article and the paragraph sign symbolizes Contract. The Diameter to
println is an Impression or path as discussed in Section 16.

1 expression ((§ bind "object" = (@new)));

2 expression ((bind §"object"@"array" = define["abc","def"]));

3 println ((§"object"@"array"[1]));

16 Impressions

An Impression is an operand that is build from a sequence of dereferences similar to a path.
It is implemented as a stack in a Value on the stack of Work.

A value:impression node takes a Value from stack before execution of its inferior nodes. The
Value is wrapped inside an ImpressionFiniteValue which is then put on stack instead.
The contained Value can be dereferenced with two operations. value:articleAt dereferences
a contained Article with a given string as name and value:arrayAt dereferences a contained
Array with a given int as index. After execution of all inferior nodes a value:impression node
takes an ImpressionFiniteValue from stack and puts its contained Value on stack instead.

Listing 7 gives an example.

16 IMPRESSIONS 22

Listing 7: Impression with Article and Array

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:cmd="dict: // deathtalk/command"

5 xmlns:contract="dict:// deathtalk/contract"

6 xmlns:art="dict: // deathtalk/article">

7 <cmd:expression >

8 <contract:bind >

9 <value:string >object </value:string >

10 <art:new/>

11 </contract:bind >

12 </cmd:expression >

13 <cmd:expression >

14 <value:articleBindAs >

15 <contract:referArticle >

16 <value:string >object </value:string >

17 </contract:referArticle >

18 <value:string >array</value:string >

19 <value:arrayDefinition >

20 <value:arrayElement >

21 <value:string >abc</value:string >

22 </value:arrayElement >

23 <value:arrayElement >

24 <value:string >def</value:string >

25 </value:arrayElement >

26 </value:arrayDefinition >

27 </value:articleBindAs >

28 </cmd:expression >

29 <cmd:println >

30 <rhythm:rereferString >

31 <contract:referArticle >

32 <value:string >object </value:string >

33 </contract:referArticle >

34 <value:impression >

35 <value:articleAt >

36 <value:string >array</value:string >

37 </value:articleAt >

38 <value:arrayAt >

39 <value:int >1</value:int >

40 </value:arrayAt >

41 </value:impression >

42 </rhythm:rereferString >

43 </cmd:println >

44 </exe:deathTalk >

17 CONDITIONAL EXECUTION 23

17 Conditional Execution

DeathTalk supports conditional execution or branches with exe:ifThen and exe:ifThenElse,
see Listing 8. exe:ifThen requires exactly two direct inferior nodes and exe:ifThenElse requires
exactly three direct inferior nodes. The first node is the condition on which to execute the
next node. Further conditions are to be nested. exe:parent groups nodes.

A basic exe:switch is implemented but not documented here.

Another branch is possible say Take that would take an integer and execute the direct inferior
node of that index.

Listing 8: Conditional Execution

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:cmd="dict: // deathtalk/command"

5 xmlns:contract="dict:// deathtalk/contract">

6 <exe:ifThen >

7 <value:smallerThan >

8 <value:int >1</value:int >

9 <value:int >2</value:int >

10 </value:smallerThan >

11 <cmd:println >

12 <value:string >then of ifThen </value:string >

13 </cmd:println >

14 </exe:ifThen >

15 <exe:ifThenElse >

16 <value:smallerThan >

17 <value:int >2</value:int >

18 <value:int >1</value:int >

19 </value:smallerThan >

20 <cmd:println >

21 <value:string >then of ifThenElse </value:string >

22 </cmd:println >

23 <exe:superior >

24 <cmd:println >

25 <value:string >else of ifThenElse </value:string >

26 </cmd:println >

27 </exe:superior >

28 </exe:ifThenElse >

29 </exe:deathTalk >

18 TEMPORARY RECURRING NODES 24

18 Temporary Recurring Nodes

Sections of recurring nodes are either repetitive in time and implemented with loops that
are executed in place. Or recurring nodes are not repetitive in time and implemented with
designated subgraphs, see Section 20.

18.1 Loops

Of all serial loops only exe:whileDo is implemented in DeathTalk for simplicity of the presen-
tation. See Listing 9 which is basically a for-loop and generates the below Epilog.

1 expression ((§ bind "count" = 0));

2 while (§"count" < 3) do

3 {

4 println("loop");

5 expression ((++§"count"));
6 }

7 expression ((§ unbind "count"));

18 TEMPORARY RECURRING NODES 25

Listing 9: Conditional Execution

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:cmd="dict: // deathtalk/command"

5 xmlns:contract="dict:// deathtalk/contract">

6 <cmd:expression >

7 <contract:bind >

8 <value:string >count</value:string >

9 <value:int >0</value:int >

10 </contract:bind >

11 </cmd:expression >

12 <exe:whileDo >

13 <value:smallerThan >

14 <contract:referInt >

15 <value:string >count</value:string >

16 </contract:referInt >

17 <value:int >3</value:int >

18 </value:smallerThan >

19 <exe:superior >

20 <cmd:println >

21 <value:string >loop</value:string >

22 </cmd:println >

23 <cmd:expression >

24 <value:increment >

25 <contract:referInt >

26 <value:string >count</value:string >

27 </contract:referInt >

28 </value:increment >

29 </cmd:expression >

30 </exe:superior >

31 </exe:whileDo >

32 <cmd:expression >

33 <contract:unbind >

34 <value:string >count</value:string >

35 </contract:unbind >

36 </cmd:expression >

37 </exe:deathTalk >

19 TYPES 26

19 Types

DeathTalk provides with just a few standard types for simplicity of the presentation of a
normal computational logic. More complex Types can be declared and organized together
with then associated Routines and Operators in a dynamic hierarchy similar to Java pack-
ages. The definition of a Type with a class and according Type safety is not implemented
since that is a machine independent matter of a higher programming language. A machine is
defined in terms of Operations and not in terms of operands. An Article can join a Type,
though, in order to call Operators and specific Routines implicitly, as discussed in Section
20.5.

The Type hierarchy includes all complex types. Each Work is executed within a current
Type. The initial Work is executed within the root Type. Basic Commands and Oper-
ations to the Type hierarchy are listed below.

type:root puts a reference to the root Type of the hierarchy on stack.

type:new declares a new Type relative to the current Type of Work and puts a
reference on stack.

type:refer takes a String from stack, looks up a Type by that name in the current
working Type and puts an according reference on stack.

type:change takes a reference from stack and changes the current working Type.

type:open combines type:refer and type:change.

type:close changes the current working Type to its direct superior Type.

20 Spatially Recurring Nodes

Sections of nodes that repeat in source code or space are commonly deformed into sub-
graphs that are callable from special nodes out of place. Such a callable subgraph is named
Outsource in DeathTalk. In DeathTalk a Jump call of an Outsource takes place either
explicitly with a bidirectional Routine or it takes place implicitly with a unidirectional Op-
erator.

In DeathTalk a deformation into Outsources is normal since the traversal or execution takes
place in precisely the same order from which it were derived analytically. Data is fetched when
required in case of a Routine which means that an Outsource may callback Insources of
the calling Routine in any order and as many times as necessary until return. In case of an
Operator all data is available already and passed at once.

Through Jumps execution deviates from the order given in source code and a lot can change
between a call and a callback. DeathTalk maintains continuity over Calls and Callbacks
according to source code automatically.

An Outsource is mathematical in that it has no runtime state or Scope. Some nested
Routine calls may run within the same Contract and exchange data this way. Others may
initiate further even privileged Contracts and restrict data exchange to callbacks. DeathTalk

20 SPATIALLY RECURRING NODES 27

maintains Contract continuity automatically in order for nodes that are called back from an
Outsource at runtime to run in the same Contract as their direct superior Routine node
according to source code.

A tree traversal or execution of an instruction graph is directed with continuous events at
Operation and Command nodes. The division of an instruction graph into subgraphs
introduces discontinuity events of Void in a then deformed traversal since the direct inferior
nodes in source are not the direct inferior nodes at runtime. Instead execution jumps to
another node that is defined somewhere else in source code.

Rhythm introduces concretion with grammar in order to approximate continuity at abstract
Void events and generate Epilog. Execution does not require continuity of operands and
operations. To the machine Rhythm is just syntactic sugar. Rhythm improves readability
and is discussed later for simplicity.

20.1 Outsources

An Outsource makes a proper Value that can be passed around and bound. The value
contains the root node of the Outsource.

An instruction graph with Outsources is read and build without change. At runtime, though,
execution bounces at an Outsource node as if it is a leaf node. An Outsource can only be
entered with special explicit or implicit Jump calls.

Listing 10: An Outsource is a Value

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:cmd="dict: // deathtalk/command">

5 <cmd:expression >

6 <value:outsource >

7 <cmd:println >

8 <value:string >never executed </value:string >

9 </cmd:println >

10 </value:outsource >

11 </cmd:expression >

12 </exe:deathTalk >

20 SPATIALLY RECURRING NODES 28

20.2 Routines

DeathTalk is a normal computational logic. In DeathTalk deformations of an instruction
graph are continuous. Source and destination graphs are homeomorphic. Thus the deformed
traversal is topologically equivalent to the tree traversal. Therefore data is fetched from the
calling node with callbacks by special nodes exe:externName or exe:externIndex within the
Outsource. Which means that data is not passed to an Outsource as arguments in case of
a Routine call.

Figure 3 of Listing 11 shows a bidirectional Routine. Epilog is not given since Rhythm is
disabled, see line 7 of the Listing.

In Figure 3 the green section of nodes {{1,2,4,5}} prints the concatenation of three strings {3},
{5} and {6} that is "first string second string". Node {5} is a whitespace according
to line 12 of Listing 11.

In Figure 3 the red section of nodes {{10,11,15,16}} is identical to the green section and
stored inside a non-bound Outsource. During the deformed traversal Node {8} behaves like
a leaf node and execution bounces. The Outsource is entered with Routine node {20}.

Node {14} exe:externName takes the parameter string "first callback" that was pro-
duced by Node {13} and execution jumps to Insource {21} which carries the exe:name
of "first callback". Execution returns from the callback immediately since there are no
inferior nodes.

Node {19} takes the parameter string "second callback" of Node {18} and performs a call
back and forth to Insource {22}. Execution proceeds and the non-bound Outsource returns
from Node {8} to Routine call {20}. Three jumps shown with dashed lines are required
to print the concatenation "A C" with this particular Outsource through a bidirectional
Routine call.

Execution stacks are dynamic in DeathTalk and if an inferior Work is finished then all data
spills over to its direct superior Work in runtime. This way string {21} is spilled on the stack
of {14} and string {22} is spilled on the stack of {19}. The result of the Outsource is empty
and would otherwise spill over from the stack of {8} onto the stack of Routine Node {20}.

A bidirectional Routine call is in any way dynamic and the order as well as the number of
callbacks is not required at build time. An instruction graph could even be extended by one
callback between call and another callback. A paradigm does not exist for a bidirectional
Routine.

20 SPATIALLY RECURRING NODES 29

Figure 3: Bidirectional Routine without Rhythm

0 - deathTalk

1 - println

2 - concat

3 - string 4 - concat

5 - string 6 - string

7 - callValue

8 - outsource

9 - further

10 - println

11 - concat

12 - gettingString

13 - string 14 - externName

15 - concat

16 - string 17 - gettingString

18 - string 19 - externName

20 - routine

21 - string 22 - string

20 SPATIALLY RECURRING NODES 30

Listing 11: Bidirectional Routine without Rhythm

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:cmd="dict:// deathtalk/command"

3 xmlns:exe="dict: // deathtalk/execution"

4 xmlns:rhythm="dict:// deathtalk/rhythm"

5 xmlns:value="dict: // deathtalk/value"

6 xmlns:contract="dict:// deathtalk/contract"

7 exe:rhythm="false">

8 <cmd:println >

9 <value:concat >

10 <value:string >first string </value:string >

11 <value:concat >

12 <value:string > </value:string >

13 <value:string >second string </value:string >

14 </value:concat >

15 </value:concat >

16 </cmd:println >

17 <rhythm:callValue >

18 <value:outsource >

19 <contract:further >

20 <cmd:println >

21 <value:concat >

22 <rhythm:gettingString >

23 <value:string >first callback </value:string >

24 <exe:externName/>

25 </rhythm:gettingString >

26 <value:concat >

27 <value:string > </value:string >

28 <rhythm:gettingString >

29 <value:string >second callback </value:string >

30 <exe:externName/>

31 </rhythm:gettingString >

32 </value:concat >

33 </value:concat >

34 </cmd:println >

35 </contract:further >

36 </value:outsource >

37 <value:routine >

38 <value:string exe:name="first callback">A</value:string >

39 <value:string exe:name="second callback">C</value:string >

40 </value:routine >

41 </rhythm:callValue >

42 </exe:deathTalk >

20 SPATIALLY RECURRING NODES 31

20.3 Bound Outsources

An Outsource can be bound like any other Value to a Type, an Article or a Contract.
A bound Outsource is executed with a reference.

Listing 12 is an example of an Outsource bound to a newly declared Type. Listing 13 is
an example of an Outsource bound to an Article. The applied Impression is discussed in
Section 15.

Listing 12: Outsource Bound to Type

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:type="dict: // deathtalk/type"

5 xmlns:rhythm="dict:// deathtalk/rhythm"

6 xmlns:cmd="dict: // deathtalk/command">

7 <!-- change to a new working type -->

8 <type:change >

9 <type:new >

10 <value:string >some type name</value:string >

11 </type:new >

12 </type:change >

13 <!-- bind a new outsource to working type -->

14 <type:bindOutsource >

15 <value:string >name</value:string >

16 <value:outsource >

17 <cmd:println >

18 <value:string >content </value:string >

19 </cmd:println >

20 </value:outsource >

21 </type:bindOutsource >

22 <!-- call outsource of working type -->

23 <rhythm:unvoid >

24 <rhythm:callName >

25 <value:string >name</value:string >

26 <type:routine/>

27 </rhythm:callName >

28 </rhythm:unvoid >

29 <!-- prints "content" and exits -->

30 </exe:deathTalk >

20 SPATIALLY RECURRING NODES 32

Listing 13: Outsource Bound to Article

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:cmd="dict: // deathtalk/command"

5 xmlns:art="dict: // deathtalk/article"

6 xmlns:contract="dict:// deathtalk/contract"

7 xmlns:rhythm="dict:// deathtalk/rhythm">

8 <cmd:expression >

9 <contract:bind >

10 <value:string >object </value:string >

11 <art:new/>

12 </contract:bind >

13 </cmd:expression >

14 <cmd:expression >

15 <value:articleBindAs >

16 <contract:referArticle >

17 <value:string >object </value:string >

18 </contract:referArticle >

19 <value:string >member </value:string >

20 <value:outsource >

21 <cmd:println >

22 <value:string >outsource of article </value:string >

23 </cmd:println >

24 </value:outsource >

25 </value:articleBindAs >

26 </cmd:expression >

27 <rhythm:unvoid >

28 <rhythm:callValue >

29 <rhythm:rereferOutsource >

30 <contract:referArticle >

31 <value:string >object </value:string >

32 </contract:referArticle >

33 <value:impression >

34 <value:articleAt >

35 <value:string >member </value:string >

36 </value:articleAt >

37 </value:impression >

38 </rhythm:rereferOutsource >

39 <value:routine/>

40 </rhythm:callValue >

41 </rhythm:unvoid >

42 <!-- prints "outsource of article" and exits -->

43 </exe:deathTalk >

20 SPATIALLY RECURRING NODES 33

20.4 Continuity

Program sources are usually divided into Outsources that each define the instruction sub-
graph for a common task and that are called at runtime. In DeathTalk a Routine is a
bidirectional Call of an Outsource. A Routine can have several Insources that may be
called back from an Outsource with exe:externName or exe:externIndex in any order and
as many times as necessary.

Execution is explicitly divided at Stretches or Routine Calls and Extern Callbacks.
Additionally execution is implicitly divided at Stretches or Calls to Operators. A Stretch
contains all nodes between two Jumps nodes and is executed in both directions.

In source code Routine and Insources are always directly related. Execution deviates
from this order which requires the implementation of two continuous mappings. Firstly, a
mapping of Insources to their superior Routine. Secondly, a mapping of the Contract to
an Insource from which Routine was executed.

Both continuity mappings are discussed below with references to Figure 4 which shows the
division into stretches of a program that makes a detour just to print the word "here". In
that figure a thick edge represents a Call Stretch of which the label has three implications.
Firstly, the label is the running number of a Stretch. Secondly, the label is the string that an
Outsource is looked up with. Thirdly, the label is the string that the Outsource is bound
with. In Figure 4 a double edge represents a Callback Stretch of which the label has three
implications. Firstly, the label is again the running number of a Stretch. Secondly, the label
is the string that an Insource is looked up with. Thirdly, the label is the string that an
Insource is named with. Each edge points away from the initiation node with the arrowhead
on the One end of the One-to-Many-relationship.

Figure 4: Stretches are defined between Jump nodes and executed in both directions

Initial Contract

(S0)

Further Contract

Routine
Insource
"here"

Outsource"S1"

Routine
Insource

Routine
Insource

Extern

"S6"

Outsource
Extern"S2"

"S3"

Outsource
Extern

"S4"

"S5"

20 SPATIALLY RECURRING NODES 34

Table 3: Key Relations of Figure 4 according to Section 20.4.1
Stretch 0 1 2 3 4 5 6

Executive Parent - 0 1 2 3 4 5
Source Parent - 0 1 1 1 1 0

Self 0 1 2 1 4 1 0

20.4.1 Source Continuity

Three key relations are stored with each Stretch in order to maintain source continuity over
execution. A central fourth relation is derived from the first three relations. A parent is either
the direct superior Stretch at runtime or in source code.

1. An own unique number is generated from a sequence.

2. The executive parent Stretch by which the Stretch was initiated at runtime is stored.

3. The parent Stretch according to source code is determined by either of two by two
cases.

(a) If the initiating Stretch and therefore the executive parent is a Routine Stretch

i. and if the new Stretch is also a Routine Stretch then its executive parent
is also its source parent.

ii. and if the new Stretch is a Callback Stretch then the source parent of the
new Stretch is the source parent of the executive parent Stretch.

(b) If the initiating Stretch is a Callback Stretch

i. and if the new Stretch is a Routine Stretch then the source parent of the
new Stretch is the source parent of the executive parent Stretch.

ii. and if the new Stretch is also a Callback Stretch then the source parent
of the new Stretch is the source parent of the source parent of the executive
Stretch. Which is the only case that cannot be derived from the executive
parent and that therefore makes this bookkeeping necessary.

4. Self is a frequent relation at runtime and determined by either of two cases.

(a) A Routine Stretch is its own Self.

(b) The Self of a Callback Stretch is the Routine Stretch that initiated the Call
thus the source parent.

DeathTalk starts execution with an initial Stretch that has no direct superior Stretch or
parent. The determination of the three key relations for further stretches is given again as a
short table.

20 SPATIALLY RECURRING NODES 35

Determine below for new from Routine from Callback

executive parent sequential sequential
source parent for Routine this source parent
source parent for Callback source parent source parent of source parent

20.4.2 Contract Continuity

The Contract hierarchy is discontinuous in execution at a Callback Jump. It is this
discontinuity that requires the construct of Stretches and in return allows for even more
concurrency through Stretches. A Callback Stretch begins at an Insource which is a
direct inferior node of a Routine node in source code and therefore inherits the Contract
according to source code. The then required Contract is only directly accessible from Self
in the exceptional case that the Contract hierarchy was not furthered between Self and
Call.

In all other cases the required Contract can only be found back in execution for which a
simple algorithm is available. A first loop goes back over all consecutive Callback Stretches
in execution. The required Contract is then determined by a second loop that starts at the
first Routine Stretch back in execution and that goes back in source for as many iterations
less one which only covers Routine Stretches. Which touches as many Routine Stretches
as Callback Stretches.

The Contract required for Callback Stretch 6 in the example according to Figure 4 is
not directly accessible from Self of Callback Stretch 6 since the Contract hierarchy was
furthered between Self and Call. The required Contract is found by going back in execution
over ("S6" - "S5" - "S4") and by then going back in source over ("S4" - "S1").

20.5 Operators

An Operator is an Outsource that is executed implicitly for a unary or binary combination
of Articles that are each joined with a Type and as such is just a combination of some of
the already discussed technologies.

Listing 14 is an example of the definition and application of the value:utter operator for the
root Type in five steps.

Line 9: A new Outsource is associated with the utter Operator of the root Type.
Line 18: A new Article is bound by the name of "object" to the initial Contract.
Line 23: A String is bound by the name of "value" to the Article.
Line 31: The Article is made an instance of the root Type with art :join.
Line 37: The result of value:utter on the Article is printed and gives "Good Bye World".

Only very few binary operators are actually implemented for simplicity of the presentation
such as type:joinAddArticleArticle or type:joinMultiplyRealArticle.

20 SPATIALLY RECURRING NODES 36

Listing 14: Utter Operator

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:cmd="dict: // deathtalk/command"

5 xmlns:type="dict: // deathtalk/type"

6 xmlns:contract="dict:// deathtalk/contract"

7 xmlns:art="dict: // deathtalk/article"

8 exe:rhythm="false">

9 <type:joinUtter >

10 <value:outsource >

11 <value:impression >

12 <value:articleAt >

13 <value:string >value</value:string >

14 </value:articleAt >

15 </value:impression >

16 </value:outsource >

17 </type:joinUtter >

18 <cmd:expression > <contract:bind >

19 <value:string >object </value:string >

20 <art:new/>

21 </contract:bind >

22 </cmd:expression >

23 <cmd:expression > <value:articleBindAs >

24 <contract:referArticle >

25 <value:string >object </value:string >

26 </contract:referArticle >

27 <value:string >value</value:string >

28 <value:string >Good Bye World!</value:string >

29 </value:articleBindAs >

30 </cmd:expression >

31 <art:join >

32 <contract:referArticle >

33 <value:string >object </value:string >

34 </contract:referArticle >

35 <type:current/>

36 </art:join >

37 <cmd:println >

38 <value:utter >

39 <contract:referArticle >

40 <value:string >object </value:string >

41 </contract:referArticle >

42 </value:utter >

43 </cmd:println >

44 </exe:deathTalk >

21 RHYTHM 37

21 Rhythm

Rhythm is a builtin schema for the validation of a DeathTalk source code. An XML schema
is not derived since DeathTalk is not at a productive stage.

Rhythm is a normal grammar. Their are no further abstractions. Rhythm is aimed at
an alternate succession of operands and operations. Rhythm improves readability, allows
for generation of Epilog and keeps data close to their target instruction. A machine has no
Rhythm and does not understand sense.

Rhythm
Entity

Law
Is

Has
constant Series of Entities

Power of Entity by unknown Arity

The two fundamental entities of Rhythm are Part and Value. Everything instructive is
a Part such as a Command, a Control or an Operation. Everything combinable that
eventually turns into a Value is Value.

Rhythm has three laws that define any programming language. All it takes is proper labels
for Entities.

1. The Is-Law concretes.

2. The two Has-Laws define direct inferior Entities.

2a. The Series-Law states the exactly required inferior Entities.

2b. The Power-Law states that an Entity has an Arity number of a specific Entity.

21.1 Entities of the Obligatory Greeting

The obligatory greeting has three entities as shown in Figure 5.

1. exe:deathTalk is a PROGRAM. An exe:deathTalk has an infinite number of PART en-
tities. Thus arity is infinite.

2. cmd :println is a COMMAND. cmd :println has one VALUE. cmd :println calls toString
internally for simplicity and therefore it is not necessary to pass a string. A COMMAND
is a SECTION. A SECTION is a PART of the same file.

3. value:string is a LITERAL CONSTANT that has no inferior Entities.
A LITERAL CONSTANT is a LITERAL and LITERAL is a VALUE.

21 RHYTHM 38

Figure 5: Entities of the obligatory greeting.

exe:deathTalk

cmd :println
Arity=1

value:string

PROGRAM
power(PART)

LITERAL CONSTANT
series[] LITERAL VALUE

COMMAND
power(VALUE) SECTION PART

Listing 15: A machine has no rhythm.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk xmlns:exe="dict:// deathtalk/execution"

3 xmlns:value="dict: // deathtalk/value"

4 xmlns:cmd="dict: // deathtalk/command"

5 exe:rhythm="false">

6 <value:string >this</value:string >

7 <value:string >makes</value:string >

8 <value:string >no</value:string >

9 <value:string >sense</value:string >

10 <value:concat/><value:concat/><value:concat/>

11 <cmd:println/>

12 </exe:deathTalk >

22 INTERNAL ITERATOR WITH RHYTHM 39

22 Internal Iterator with Rhythm

A bidirectional Routine allows for a normal internal iterator. A complete example with
Rhythm is given in this Section. The iterator is normal since it only iterates. The calling
Routine is called back for each iteration and executes logic that is not exposed to the iterator
with some other Routine as necessary with abnormal logic.

The root element loads all necessary Parts of the MachineDictionary and flags that the
name of the document is put out to console at the beginning of execution which is quite useful
with several documents open.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <exe:deathTalk name="Internal Iteration" debug:greet="true"

3 xmlns:debug="dict: // deathtalk/debug"

4 xmlns:exe="dict: // deathtalk/execution"

5 xmlns:value="dict: // deathtalk/value"

6 xmlns:type="dict: // deathtalk/type"

7 xmlns:cmd="dict: // deathtalk/command"

8 xmlns:contract="dict:// deathtalk/contract"

9 xmlns:rhythm="dict:// deathtalk/rhythm"

10 xmlns:a="resource: // deathtalk/annotation">

The iterator is supposed to be some reusable outsource that may be bound to some library.
It is bound to the root type here.

11 <a:comment >internal iterator </a:comment >

12 <type:bindOutsource >

13 <value:string >iterator </value:string >

14 <value:outsource >

The outsource runs in a Contract that must not be privatized since the counter is bound to
the shared contract. The contract may be protected, though, such that data is only shared
between calling Routine and this iterator.

15 <cmd:expression >

16 <contract:bind >

17 <value:string >counter </value:string >

18 <value:int >0</value:int >

19 </contract:bind >

20 </cmd:expression >

The iterator executes a simple loop from 1 to 3 here and may be as complex as necessary for
a proper application.

21 <!-- a simple loop -->

22 <exe:whileDo >

23 <value:smallerThan >

22 INTERNAL ITERATOR WITH RHYTHM 40

24 <contract:referInt >

25 <value:string >counter </value:string >

26 </contract:referInt >

27 <value:int >3</value:int >

28 </value:smallerThan >

The loop body only calls back the insource by the name of handler of the calling Routine
and increments the counter. The name of the insource is passed as Parameter. Readability
is improved with Rhythm. rhythm:unvoid masks a Void as section and rhythm:externName
pulls name and callback together such that Epilog gives sense.

29 <exe:superior >

30 <!-- callback caller -->

31 <rhythm:unvoid >

32 <rhythm:externName >

33 <value:string >handler </value:string >

34 <exe:externName/>

35 </rhythm:externName >

36 </rhythm:unvoid >

37 <!-- increment counter -->

38 <cmd:expression >

39 <value:increment >

40 <contract:referInt >

41 <value:string >counter </value:string >

42 </contract:referInt >

43 </value:increment >

44 </cmd:expression >

45 </exe:superior >

46 </exe:whileDo >

47 </value:outsource >

48 </type:bindOutsource >

The caller initiates a Contract with protected access such that data is only visible to the
iterator. The insource only prints the value of the counter here. exe:superior is actually not
required. Readability is improve with Rhythm. rhythm:unvoid masks a Void as section and
rhythm:callName pulls name and call together such that Epilog gives sense.

49 <a:comment >contract allows for exchanging data</a:comment >

50 <contract:further contract:access="protected">

51 <rhythm:unvoid >

52 <rhythm:callName >

53 <value:string >iterator </value:string >

54 <type:routine >

55 <exe:superior exe:name="handler">

56 <cmd:println >

57 <contract:referInt >

58 <value:string >counter </value:string >

22 INTERNAL ITERATOR WITH RHYTHM 41

59 </contract:referInt >

60 </cmd:println >

61 </exe:superior >

62 </type:routine >

63 </rhythm:callName >

64 </rhythm:unvoid >

65 </contract:further >

66 </exe:deathTalk >

The below Epilog is generated along execution into directory debug. Epilog may not validate
and indentation is not complete.

1 /* internal iterator */

2 bindOutsource("iterator", outsource

3 {(

4 expression ((§ bind "counter" = 0));

5 while (§"counter" < 3) do

6 {

7 unvoid(externName("handler"));

8 expression ((++§"counter"));
9 }

10)}

11);

12 /* contract allows for exchanging data */

13 protected {§
14 unvoid(routine "iterator"(({

15 println("counter");

16 }

17) as "handler"));

18 §}

	Abstract
	Introduction
	Conclusion
	Download
	Concepts
	Dictionary of Machine Words
	The Obligatory Greeting
	Virtual Nodes
	Execution with Stretch and Work
	Standard Types
	Normal Runtime Data with Contracts
	Words
	Concurrent Binary Operations
	Arrays
	Articles
	Impressions
	Conditional Execution
	Temporary Recurring Nodes
	Loops

	Types
	Spatially Recurring Nodes
	Outsources
	Routines
	Bound Outsources
	Continuity
	Source Continuity
	Contract Continuity

	Operators

	Rhythm
	Entities of the Obligatory Greeting

	Internal Iterator with Rhythm

